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ABSTRACT 

Scaled experiments on the nonlinear evolution of the Rayleigh- 
Taylor (RT) and Richtmyer-Meshkov (RM) instabilities are described 
under a variety, of conditions that occur in nature. At high Reynolds 
number, the mixi,ng layer grows self-similarly - aiAgt* for a constant 

acceleration (g), and as a power law t*’ 1 for impulsive accelerations 
US(t) at low and high Mach numbers. The growth coefficients oi and 8i 

exponents are measured over a comprehensive range of Atwood 
numbers A. The RT instability is also investigated with Non- 
Newtonian materials which are independently characterized. A 
critical wavelength and amplitude for instability is observed 
associated with the shear modulus and tensile yield of the material. 
The results are applicable from supernova explosions to geophysical 
flows subject to these hydrodynamic instabilities. 

PACS numbers: 47.20.Bp, 47.25.Jn 



1. Introduction 

When a fluid of density p, accelerates another fluid of density p2, 

hydrodynamic instabilities at the interface cause strong fluid mixing. 
The Rayleigh-Taylor [I] (RT) instability occurs for a sustained 
acceleration or buoyancy (p2-p,)g(t) > 0. The Richtmyer-Meshkov [2] 

(RM) instability occurs for an impulse g = U S(t) from a shock and for 
all p2 f p,. The instabilities evolve through several stages [3] which 

are delineated by the amplitude hk and wavelength h = 27c/k of the 
unstable modes. For khk -CC 1, the modes grow independently as exp(yt) 
for RT and 0~ kUt for RM instabilities. When khk reaches some factor 

that depends on the spectral width [4-61, nonlinearities reduce the 
growth rates and broaden the spectrum. The interface then becomes 
asymmetric because spikes fall (heavy into light fluid) faster than 
bubbles rise (light into heavy fluid). If the instability is broadband, 
the nonlinearities will eventually produce a turbulent mixing layer. 

The fate of the RT instability can be characterized by its 
bandwidth and duration. The bandwidth (k) determines the spatial 
complexity of the mixing zone and it is large when the system size L 
greatly exceeds the fastest growing wavelength hf. (When hf is 

determined by viscosity, this criterion is equivalent to having a large 
Reynolds number.) The duration determines the degree of nonlinearity 
and is characterized by l/y in the linear regime and a related scale 
evolution time in the nonlinear regime, Figure 1 shows fl vs h for 

various physical systems that exhibit hydrodynamic instability. These 
include the explosion of supernovae 117-81 and magnetized plasmas [9- 
141, magnetic confinement [15, 161 and solar layers [17], inertial 
confinement fusion [18, 191 (ICF), the acceleration of metal plates 
[20-221, underground salt domes [23] and volcanic island arcs [24]. 
Since the instabilities are manifested in the nonlinear stages within 
complex physics environments, they are usually described with 
numerical simulations [5, 6, 25-331 (NS) and semi-empirical theories 
[34-391. Here, we describe experiments to investigate the 
hydrodynamic instabilities in two interesting and difficult limiting 
regimes which are exemplified by natural phenomena. 
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In supernovae explosions, a strong outgoing shock produces 
density gradients at the concentration interfaces and excites the RM 
instability. The interfaces are then RT unstable as they decelerate g - 

2&l, (cl, = 9.8 m/s*) against the overlying material. The mixing 

becomes highly turbulent because of the wide range in scales (1OO:l) 
and many e-foldings (30). Here, realistic experiments with sufficient 
diagnostic clarity are energetically prohibitive. (This differs from ICF 
in which the outward flow at the ablation surface stabilizes the 
usually virulent short wavelength modes and limits the instability to 
< 7 e-foldings.) However, scaled hydrodynamics experiments are 
possible since the plasma is Boltzman and can be replaced with a 
classical fluid. Indeed, there is a mathematical similarity between 
the interchange and RT instabilities when the plasma and magnetic 
field are replaced by heavy and light fluids, respectively. This analogy 
has motivated RT experiments [40-461 with Newtonian fluids that 
become quite turbulent because L/h, > 100 and v - 50 as indicated in 

Fig. 1 (LEM). They find self-similar mixing rates that can be used to 
test NS and empirical mix models, including those used in ICF [4, 51. 

In geology, buried fluid layers of salt or lava can penetrate the 
denser overlayment to form underground salt domes [7] and volcanic 
islands [8]. Their regular spacings (h - 70 km) and geological growth 

rates can be obtained from the RT dispersion by adjusting the 
thickness (Hi) and viscosities (vi) of the materials. However, this 
analysis infers geologically unrealistic values for HI and V~/VI and 

cannot explain the absence of salt domes in more competent 
sedimentary strata [47]. These inconsistencies can be reconciled by 
including the shear modulus p and tensile strength (T, of the overlying 

material in the dispersion relation, but the affects are nonlinear and 
not understood. As a result, we conduct scaled experiments on the LEM 
using well characterized visco-elastic-plastic materials. 

In this paper, we describe scaled experiments to investigate both 
turbulent mixing and the RT instability in elastic-plastic materials. 
In Sec. 2, we measure the turbulent RT growth rates with constant 
and impulsive accelerations over a comprehensive range of density 
ratios, In Sec. 3, the affects of compression on the RM growth rates 

- are measured using strong radiatively driven shocks (Mach > 10). In 
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Sec. 4, critical wavelengths and amplitudes for RT instability is 
measured using a well characterized visco-elastic-plastic material. 

2. Turbulent RT experiments with constant acceleration 

In the asymptotic stage, the strong nonlinearities have long 
regulated the amplified initial scales leaving gt* as the lone dominant 
independent scale length. Short wavelength modes dissipate turbulent 
energy, but they do not significantly affect the instability growth. 
The mixing layer is found to grow self-similarly with amplitudes 

hi = ai A gt* 

where the index refers to the fluid being penetrated and A = 
(p2-p,)/(p*+p,) is the Atwood number. Two amplitudes are required 

because spikes (i = 1) penetrate faster than bubbles (i = 2) 
asymptotically. The growth coefficients ai have been obtained by 
experiments and NS for selected values of density ratio R = p,/p2, but 

the results are sparse and without consensus. For bubbles, a2 appears 
to be independent of R with values - .O4-.O7 from experiments and a2 I 
- .03-.06 from NS. For spikes, al increases from a2 at R = 1 to al - .5 

(free fall) as R -+ 00, but the functional dependence on R is outstanding 
due to the paucity of data. Systematic measurements of ai over a 

comprehensive range of R are required for testing NS and empirical 
mix models. 

Here, we describe such measurements using the Linear Electric 
Motor [48] (LEM) and Newtonian fluids. For these experiments, the LEM 
provides a constant (+ 5%) acceleration 30-70 g, over a distance Z I 1 

m and time t I 55 ms. The density ratio is varied 1.3 < R I 50 using 
fluids that are incompressible, immiscible and inviscid. The container 
dimension L - IO cm is much larger than the most unstable 
wavelength hf < .5 mm. From the calculation in Fig. 1 for R = 3, 5Og,, 

and average surface tension 4 dyne/cm, the instability has sufficient 
bandwidth (1OO:i) and time (50/y) to become trubulent. The large size 

also facilitates high quality diagnosis with laser induced fluoresence _ 
(LIF) and backlit photography (BP). 
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Sample images of RT mixing are shown in Fig. 2 for a constant 
acceleration. The top row shows a sequence of bilevel LIF images for 
R = 1.96 and g - 70 g,. Bilevel images are obtained from the intensity 

images because the fluids are immiscible. The bottom row shows a 
series of BP images for R = 23.4 and g - 34 g,. BP is used at large R 

because the fluids have different indeces of refraction and scatter 
light when emulsified. Thus, the mixing layer appears dark. The 
bubbles are observed [44-461 to coalesce as expected rom bubble 
competition [30, 49-52) but the spikes do not. These images are 
analyzed to obtain hi as described in refs. [44-461. 

The spatial evolution of hi is shown in Fig. 3 for R = 1.96 and 23.4. 

The linear behavior is consistent with Eq. 1 since gt* = 22. The growth 
coefficients oi are obtained with a linear least squares fit of hi to Z 

with a zero offset to accomodate any initial perturbation [46]. 
Examples are indicated by the lines in Fig. 3. 

The variation of oi with Atwood number is shown in Fig. 4. The 
bubbles have an average value of a2 - .053 f ,006 for A < .5 and a2 - 

.049 AI .003 for A > .8. This slight downward trend indicated by the 
linear fit (line) is statistically marginal or may simply indicate some 
systematic experimental bias with A. For example, the scaled 
displacement AZ is larger for A - 1 and the experiment may be closer 
to an asymptotic self-similar state [14, 151 with lower a2. Our values 
of a2 lie between those measured previously with miscible [32, 331 

(.04-.044) and immiscible [25, 40, 431 (- .055-.075) fluids. For the 
spikes, al remains within 20 % of a2 for A < 0.5 and then it doubles as 

A increases 20% from .8 to 96. This behavior can be characterized as 

a., = .053 RD, with D, - 0.32 as indicated by the solid. line. The 

limited data of Youngs [13] (9 pts) and Kucherenko [34] (R = 20) yields 
an exponent of D, - 0.2. The discrepancy with the former data [13, 311 
is due primarily to their 30% larger values of a2 - .064 for A > .8. 

Limited NS [Youngs, Freed] at R = 1.5, 3 and 20 give D, - 114 whereas 
mix models [Youngs, Alon, Glimm] yield .3 < D, < .5. 

It is interesting to use our measurements of ai in Eq. 1 to 

compare with the NS [8] of the explosion of SN1987A. The points in 
Fig. 5 represent the total width of the H-He and He-CO interfaces in 
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the 2D simulations. We estimate a deceleration - 20 go from the 1D 

velocity profiles and A - .6 from the 1 D density profiles. The line is 
hl + h2 using a2 = .05 and ai = .08 is approximately three times 

smaller than the NS. This can be attributed to the threefold radial 
decompression observed in the ID NS, which acts to expand the 
perturbations in excess of our incompressible results. However, the 
linear relationship in Fig. 5 shows that the mixing is self-similar as 
expected since the instability is broadband and nonlinear ($ > IO). 

3. Impulsive acceleration 

An impulsive acceleration is interesting because it probes the 
inertial evolution of the hydrodynamic instabilities, which differs 
qualitatively from Eq. 1. In particular, consider an impulse U = J g dt 
in which g is applied for a short time t,. The subsequent growth of a 
random (broadband) initial perturbation hi, is expected to be 

hi(t) = hi, Tiei (2) 

where pi E Vi,(t-t,)/Bihi, +l and Vi, is Vi = dhildt evaluated at t = t,. 

Equation 2 has two key uncertainties. First, the variation of the 
exponents 8i with density contrast is unclear because the few NS and 

experiments are not in accord. Second, when the impulse comes from a 
high Mach number shock, the compression of the densities (A) and 
initial amplitudes hi, complicates the evaluation of Vi,. 

In this section, we describe experiments to evaluate both issues 
using incompressible experiments on the LEM for (1) and using strong 
(Mach > IO) radiatively driven shocks on NOVA for (2). 

Incompressible LEM experiments 

The LEM experiments are similar to those described [46] in Sec. 2 
except that the acceleration is increased in magnitude to - 150 g, and 

shortened in duration t, - IO ms. This produces a net impulse of U - 
1.5 cm/ms and initial displacement of Z, - gt,*/2 - 7.5 cm. The 
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interface is initially RT unstable during the acceleration according to 
Eq. 1 producing hi0 and Vi,. This is followed by the power law behavior 
of Eq. 2 during the coast phase. This can be seen by plotting hi vs Z in 
Fig. 6 for R = 2.83, 23.4, and 49.2. The experimental data (points) are 
fit (lines) to Eq. 2 by transforming time to Z-Z, = U(t-t,) and adjusting 
hi, and 0i. The inferred exponents indicated at each R indicate that 8i 

are insensitive to R except for the spikes at R > 20. 
The variation of Bi with Atwood number is shown in Fig. 7. The 

bubble response is insensitive to A with a sample average of 0, = .25 
+ .005. For the spikes, 8, - 8, out to A - 0.8 and then it increases 
dramatically to 8, = 1 with considerable scatter .35 < 8, < .85 for A - 

.92-.94. Here, we conducted many experiments with different fluid 
combinations and acceleration histories because there is a transition 
[20] in 8, expected near A = 0.9. This scatter may signify a sensitivity 

to initial conditions [18, 391.. As before, we fit the spike data to a 

power law 0,= 8, RDe with D, - 0.21 as indicated by the line in Fig. 7. 

Our results lie in between previous experiments and calculations. 
Similar incompressible experiments [54] with liquids at R = 3 found 
smaller values 8i - 0.1 + 0.02 for both bubbles and spikes. The 
symmetry 8, - 8, is consistent with our experiments, but the values 

are - 50 % smaller. The NS of Alon et al., [30] yield 0, = 8, R De with D, 

- 0.21 similar to our experiments, but the values at small R are 
slightly larger 8i = .4. Different NS [25, 331 also obtain smaller 
exponents 8i I .3 whereas turbulence models obtain l/3 [34] and < 2/3 

[55]. More intimate comparisons between calculations and 
experiments are warranted because the differences in Bi may partially 

be due to some sensitivity to initial conditions [25, 561. 

Compressible NOVA experiments 

When the unstable impulse is produced by a high Mach number 
shock, the initial conditions hi, and Vi, are difficult to calculate 

because the shock compresses the material densities and interface. 
For example, when an incident shock of speed s1 encounters a sudden 

density decrease, a backward rarefaction wave is generated in 
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addition to a transmitted shock of speed s2. The compression reduces 

the pre-shock Atwood ratio A- and amplitude hi,- to A and hi, - hi,- 
(1 -U/s,). Analytical [57] and numerical [58] solutions for the linear 

growth rate with A < 0 can be estimated [59] by 

Vi0 = AkU(hi,+hi,-)/2 (3). 

The solutions for A > are different because the reflected wave is a 
shock [2, 58, 601. The affect of compression is exemplified in Fig. 8 by 
plotting ViJA-kUhi,- vs the Mach number of the incident shock. The 

pre-shock densities are 1.7 and .I2 g/cmm3 for fluids 1 and 2 with 
specific heat ratios 1.8 and I .45. Thus, the growth rate decreases 
fivefold due to compression. The experimental data points are 
obtained on Nova with single mode 2D perturbations [61] of small 
amplitude. The growth rate is reduced further with a large intial 
amplitude [63] due to nonlinearities. Good agreement is obtained on 
single mode. behavior among experiments, NS and theory [63]. 

Similar experiments [64] have been conducted with random 3D 
perturbations of amplitude hi,- - 7 pm and average wavelength h - 50 
pm. The shock and interface speeds are s1 - 46 pm/ns, s2 - 73 pm/ns 

and U - 57 pmns. The initial fluid densities 1.7 and .I2 g/cme3 were 
compressed- to p, - 2 g/cm-s and p2 - .5 g/cmw3, such that A - -.6. 

The variation of hl +h2 with the net displacement Z-Z, is shown in Fig. 

9. The data is fit with to a power law with exponent .5 f .I, which is 
slightly larger but consistent with those obtained from the LEM. We do 
not currently understand this difference, but several possibilities 
exist. First, the laser drive decreases in time causing the densities to 
decompress and the interface to decelerate [65]. This causes the 
perturbations to expand like an accordian and introduces an RT 
component because Ag > 0. Both effects can significantly increase the 
inferred exponents. Second, the initial perturbations are more 
symmetric on Nova than on the LEM at A = .6, which may lead to 
different exponents if they are sensitive to initial conditions. These 
effects may also be important in other shock driven experiments [66- 
71] which exhibit large exponents 2/3-l, particularly since NS [25, _ 
331 obtain exponents < .3. 
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4. RT instability in elastic-plastic materials 

The nonlinear response of an elastic-plastic greatly affects 
the RT dispersion at short wavelengths [72-771. At small amplitude, 

the elastic stress -2uk2hk can overcome the buoyancy 6p gkhk and 

stabilize modes with 

k > 6p g/2u = k, (4) 

where 6p = (p2-p,). These modes may again be destabilized if the 
initial amplitude h, is large enough that the pressure drop across the 
perturbation exceeds the tensile yield oO, namely, 

P* = 6p g h, / 2 CT, 2 P,, 

Various models [72-761 exist for the scaled critical pressure, but the 
most promising [77] appears to be 

P cr = (1 -.86e‘kH2”3) [(A -e-kH2’13)2-(kc/k)2] (6) 

for 2D perturbations where H2 is the thickness of the elastic plate. 
Ehanced stability is predicted. [75] in 3D with P,, - 2. 

The amplitude threshold for instability has been observed with 
strong materials (metals) using high explosives (HE) drivers. Hoiuever, 
the theoretical interpretation is not unambiguous because the 
dynamical state or properties of the material at the - 100 kbar 
pressure are not measured independently. In addition, inhibited growth 
can be mis-interpreted as stability because the experimental duration 
is short < 2/y. Here, we summarize scaled experiments [78] on the LEM 
lasting 15/y with yogurt as the elastic-plastic material. The 
constitutive properties (cl - 1500 f 300 Pa, G, = 315 + 60 Pa, and v = 

5 ?I 1.5 Pa-s) are measured [79] independently under experimental 
conditions using elastic waves and uniaxial compression and 
extension tests. 
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The existence of a critical wavelength and amplitude for 
instability is demonstrated in Fig. 10. The yogurt (opaque) is outlined 
by the dashed line and has dimensions Lx = 6 cm, L, = 6.3 cm and H2 = 

3.2 cm. The light fluid is compressed nitrogen (2 IO5 Pa). In the first 
row, the interface is flat and g is increased until h, = 4nul 6p g is 

made small enough to fit into the container. Indeed, the instability is 
observed for g 2 53 go, which is near the threshold 43 + 8 g, obtained 
from setting Lxe2 + Lyw2 = hCm2. The critical wavelength has not been 
measured with HE because the plate width (< h,) was too small. In the 

second row, 2D perturbations are imposed with increasing amplitudes 
h, at h = 3 cm. With g = 28 g,, we have h, = 6.7 cm > h and RT stability 

until the amplitude threshold is exceeded for h, 2 1.2 mm. The 
temporal evolution for h 1 is shown in Fig. IOb for different h,. For h, c 

1.2 mm, the perturabtions stretch elastically but they are stable and 
recover following the acceleration. For h, > 1.2 mm, the amplitude 
grows exponentially with y - 100 s-l consistent with linear theory 

with viscosity. There is a time delay to the exponential phase which 
decreases as h, increases above the threshold. 

Equation 6 is tested by measuring the amplitude threshold at 
different accelerations and plotting P* against h/h, = hg 6p/4nu as 

shown in Fig. 1 la. The solid circles are measured with H2 = 3.2 cm and 
2D perturbations with h = 3 cm and various values of h, similar to Fig. 

10. These are in good agreement with Eq. 5 (line) and show the steady 
decrase in the critical amplitude as h approaches h,. The competing 
models [72, 751 predict a larger and constant P,, - 1 independent of h 
< h,. Similar experiments with 3D perturbations [78] confirm the 

enhanced stability. 
These results bear directly on the geophysical systems because 

the earth’s lithosphere has both elastic and plastic characteristics 
[80-821. At a temperature1300° C and confining pressure 300 MPa 
representative of the magma source, olivine has characteristic values 
of Go - 2108 dyne/cm2, u - lOi dyne/cm2 and p2 - 3 g/cm3. The 

andesite magma has p, - 2.5 g/ems, which makes h, - IO4 km >> h - 

70 km and 2o,/6pg, - 8 km. This means that the RT instability is 
inhibited until P,, can be reduced significantly. Evaluating Eq. 5 with _ 
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h -C-Z h, in Fig. 11 b, we find that P,, is decreasing for h > H2 2 40 km, 

which is near the minimum observed spacing for volcanic islands. 
Such an interpretation links the observed spacing with the thickness 
of the lithosphere. At the average spacing of h - 70 km, the critical 

amplitude is estimated to be 5-6 km, which is about 10% of the depth 
of the magma source. This appears to be somewhat large and better 
modelling is required to include the substantial variations with depth. 

In previous calculations, the fluids were characterized simply as 
viscous with a peak growth rate at h - ~cH~(v~/v,)“~. This led to an 

unreasonably thin (< 50 m) magma source for characteristic viscosity 
ratios of v2/v, < IO’ 5. Such a viscosity model may be more 

representative of salt domes where the overlying material has 
negligible strength. However, even here, the viscosity model implies 
source thicknesses are small and cannot explain the absence of salt 
domes in more competent sedimentary strata. 

5. Summary and discussion 

We have presented a series of experiments to investigate the 
nonlinear evolution of the RT and RM instabilities. 

For a constant acceleration, the RT instability is found to grow 
self-similarly according to Eq. 1. The growth coefficients ai are 

measured over a comprehensive range of density ratio and the results 
are found applicable to supernova exlposions. 

For an impulsive acceleration, there are two components. The RM 
impulse from a shock is greatly reduced at high Mach number due to 
compressive effects in reasonable agreement with linear theory. The 
ensuing motion is essentially imcompressible describable by a power 
law of Eq. 2. However, the exponents obtained from the compressible 
RM experiments are larger than those obtained from incompressible 
RT experiments. The discrepancy is currently not understood. 

The affect of non-Newtonian constitutive properties on the RT 
instability was investigated with scaled experiments of long duration 
(15/y) and well characterized material properties. We observe a 

critical wavelength and amplitude for instability associated with the - 
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shear modulus and tensile yield of the material. The results are 
directly applicable to geophysical flows subject to the RT instability. 
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Fiaure Captions 

Figure 1: Number of RT e-foldings vs wavelength for various physical 
systems. 

Figure 2: (a) Laser induced fluoresence images at various 
displacements for density ratio R = 1.96 and a constant g = 70 go. (b) 
Backlit photography images for R = 23.4 and g = 34 g,. The initial 

interfaces are marked by arrows and the horizontal widths are (a) 6.2 
cm and (b) 6.7 cm. 

Figure 3: Spatial variation of bubble and spike amplitudes for constant 
accelerations. Points are data and lines are linear fits to obtain the 
growth coefficients ai. 

Figure 4: Growth coefficients ai for bubbles and spikes vs Atwood 
number. Points are data and lines are fits. 

Figure 5: Total mix width at He-H and CO-He interfaces vs 
deceleration distance gt2 for supernova 1987A. Points are obtained 
from simulation in ref. [8] and line is Eq. 1 using the measured ai at A 
= .6. 

Figure 6: Spatial evolution of bubble and spike amplitudes for pulsed 
accelerations. Points are data and lines are fits following the impulse 
using Eq. 2 for the exponents ei as indicated. 

Figure 7: Power law exponents ei for bubbles and spikes vs Atwood 
number. Points are data and lines are fits. 

Figure 8: RM linear growth rates scaled to the incompressible growth 
rate vs Mach number of incident shock. Points represent 
measurements in ref. [ ] and line is calculated from Eq. 3 and ref. [ ] 
for R = .068 and adiabatic constants 1.8 and 1.45 for fluids 1 and 2. 
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Figure 9: Total mix width vs the displacement of the interface for 
random 3D imposed perturbations. Incident shock has Mach > IO and 
fluids have R = .064 and adiabatic constants 1.8 and 1.45 for 1 and 2. 
Lines are fits with 8i = .5 + .I. 

Figure 10: Temporal variations of spike amplitude and associated 
images for constant accelerations (dashed lines). (a) The interface is 
flat and the magnitude of g is increased until instability is observed 
for yogurt at 53 g,. The Newtonian fluid (+) is always unstable. (b) 

Perturbations of various amplitudes are imposed with h = 3 cm and g = 

28 g,. The instability transition occurs at 1.2 mm. 

Figure 11: Critical scaled pressure (amplitude) for instability. (a) 
Experimental points are taken with different values of g and the line 
is Eq. 6 with h = 3 cm and H, = 3.2 cm. (b) Eq. 6 for h, = infinity. 
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